Extended Low Frequency Neo Transducer

KeyFeatures

97 dB SPL 1W / 1m average sensitivity 135 mm (5.3 in) split winding four layers 3600 W program power handling Carbon fiber reinforced cone

Triple Silicon Spider (TSS) for improved excursion control

Single Demodulating Ring (SDR) for lower distortion

Low noise forced ventilation design

High force neodymium magnet assembly

Weather protected cone and plates for outdoor usage

Suitable for reflex, bandpass or horn loaded high SPL subwoofer systems

The 18NLW9600 is an extended low frequency 18 inch neodymium high performance transducer. The loudspeaker has been designed for use as a subwoofer component, in either a reflex, bandpass or horn loaded configuration, in high power auditorium or arena loudspeaker systems.

For optimum results recommended amplifier should be able to deliver 3600 Watt program power.

Eighteen Sound engineers have obtained the best possible results with today's available materials in terms of clean and undistorted LF reproduction at a ultra high SPL, with the lowest possible power compression figure.

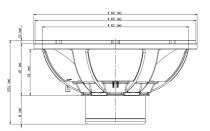
The state-of-the-art 5,3" diameter ISV CCAW (copper clad aluminum wire) voice coil shows a inside-outside split winding, four layers design, enabling the 18NLW9600 to handle up to 3600W program power.

The transducer design features include a large displacement suspension system specifically designed for matching the carbon fiber reinforced, straight ribbed cone.

Thanks to the Triple Silicon Spider (TSS) technology, the 18NLW9600 is able to control the moving mass with high linearity, showing an exceptional stability of mechanical parameter values in the long term. Bl force factor, as well as all other electro-dynamic parameters, are linear within the working range. This, together with

the exceptional high excursion behavior - 70mm before damage, ± 14 mm linear Xmax - makes the 18NLW9600 an extremely low distortion, highly dynamic transducer.

The already low distortion and sound quality are further improved by an aluminum Single Demodulating Ring (SDR technology) that flatten impedance and phase with a constant power transfer.


The 18NLW9600 has been developed after intense FEA and fluidodynamics simulation and testing, focusing on dissipating the heat generated by the powerful voice coil. Special attention was given to the optimization of air flow into the gap without introducing audible noise. A special low-density material air diffractor placed into the heatsink acts as a cooling system, increasing the power handling capability and lowering the power compression figure.

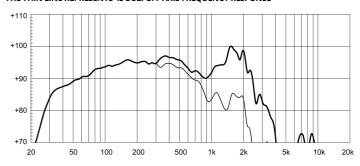
The exclusive cone treatment improves pulp strength and gives water repellent properties to both sides of the cone. A special coating applied to both the top and back plates makes the transducer far more resistant to the corrosive effects of salts and oxidization.

Models

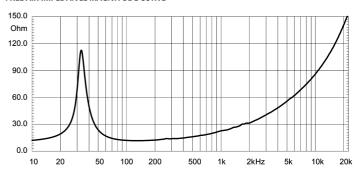
Model	Code	Information
022188N000	022188N000	8 Ohm
022184N000	022184N000	4 Ohm
027188N000	027188N000	R-kit
027184N000	027184N000	R-kit

General Specifications

Nominal Diameter	462mm (18 in)	
Rated Impedance	8 Ohm	
AES Power	1800W	
Program Power	3600W	
Peak Power	10000W	
Sensitivity	97 dB	
Frequency Range	32 - 2500 Hz	
Power Compression @-10dB	0.7 dB	
Power Compression @-3dB	1.3 dB	
Max Recomm. Frequency	300 Hz	
Recomm. Enclosure Volume	110 ÷ 350 lt. (3,88 ÷ 12,36 cuft)	
Max Peak To Peak Excursion	70 mm (2,75 in)	
Voice Coil Diameter	135 mm (5,3 in)	
Voice Coil Height	32 mm (1.26 in)	
Voice Coil Technology	split winding, 4 layers copper clad Al wire	
Gap Depth	12 mm (0.47 in)	
Suspension	Triple Roll Polycotton	
Cone	Straight ribbed carbon fiber loaded cellulose	


Thiele Small Parameters

Fs	34 Hz
Re	4,7 Ohm
Sd	0,1134 sq.mt. (189,9 sq.in.)
Qms	8,7
Qes	0,29
Qts	0,28
Vas	149 lt. (5,1 cuft)
Mms	261 gr. (0,58 lb)
BL	30 Tm
Linear Mathematical Xmax	±14 mm (±0,55 in)
Le (1kHz)	2,11 mH
Ref. Efficiency 1W@1m (half space)	95,1 dB


Mounting information

Overall diameter	462 mm (18,18 in)	
N. of mounting holes and bolt	8	
Mounting holes diameter	8,5 mm (0,33 in)	
Bolt circle diameter	440mm (17,32 in)	
Front mount baffle cutout ø	416 mm (16,38 in)	
Rear mount baffle cutout ø	422 mm (16,61 in)	
Total depth	236 mm (9,29 in)	
Flange and gasket thickness	26 mm (1,02 in)	
Flange and gasket thickness	26 mm (1,02 in)	
Net weight	12,5 kg (27,6 lb)	
Shipping weight	14 kg (30,9 lb)	
CardBoard Packaging dimensions	482 x 482 x 257 mm (19 x 19 x 10,1 in)	

FREQUENCY RESPONSE CURVE OF 18NLW9600 MADE ON 180 LIT. ENCLOSURE TUNED AT 35HZ IN FREE FIELD (4PI) ENVIRONMENT. ENCLOSURE CLOSES THE REAR OF THE DRIVER. THE THIN LINE REPRESENTS 45 DEG. OFF AXIS FREQUENCY RESPONSE

FREE AIR IMPEDANCE MAGNITUDE CURVE

Notes

- (1) AES power is determined according to AES2-1984 (r2003) standard
 (2) Program power rating is measured in 180 it enclosure tuned @ 35Hz using a 40-400Hz band limited pink noise test
 (2) Program power rating is measured in 180 it enclosure tuned @ 35Hz using a 40-400Hz band limited pink noise test
 (3) The peak power rating represents the maximum permitted instantaneous peak power level over a maximum
 period of 10ms which will be withstood by the loudspeaker without damage.
 (4) Sensitivity represents the averaged value of acoustic output as measured on the forward test signal sweet
 between 100Hz and 500Hz with the test specimen mounted in the same enclosure as given for (1) above.
 (5) Frequency range is given as the band of frequencies delineated by the lower and upper limits where the output
 level drops by 10 db below the rated sensitivity in Alf space environment.
 (6) Power compression represents the loss of sensitivity for the specified power, measured from 50-500 Hz, after a 5
 min pink noise preconditioning test at the specified power.
 (7) Thiele Small parameters are measured after the test specimen has been conditioned by 1800 W AES power and
 represent the expected long term parameters after a short period of use.
 (8) Linear Math. Xmax is calculated as (Hvc-Hg/Z + Hg/4 where Hvc is the coil depth and Hg is the gap depth.